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Abstract I D  and 20  simulations of the single-vonex dynamics in the presence of a random 
pinning potential and a periodic potential have been carried out I1 is shown that he randomness 
of the pinning site dishbution does not have much effect on the Uanspon pmpenies such as 
the I-V characleristics of the high-T, superconductors. which has been widely discussed in 
the approximation of a periodic pinning potential using an analytical method. The randomness 
effect probably reduces greatly the vortex diffusing mobility only below the depinning cunent 
value: this is more obvious at low temperatures. 

There have been many efforts dedicated to vortex dynamics in high-T, superconductors 
in the last few years because of its importance in trying to find materials with a higher 
critical current density. Vortex dynamics in the superconductors tells us information about 
the motion of the vortices influenced by various interactions, including important pinning 
effects. Usually, the pinning is caused by inhomogeneities present in the superconductors, 
e.g. impurities and defects. However, in addition to the traditional pinning centres, oxide 
superconductors with a characteristic layered structure have their own intrinsic pinning 
when the vortices move in a direction perpendicular to the layers [l]. In conventional 
superconductors, vortex dynamics is usually studied in two typical cases: flux creep and 
flux flow. The successful classical Anderson-Kim [2] thermally activated flux creep model 
and the Bardeen-Stephen [3] model have been used to describe them, respectively. In 
high-T, superconductors, the thermal energy ksT is rather high and usually comparable 
with the pinning energy; so the simple flux creep description is only applicable in the. low- 
temperature region. When the thermal energy ksT becomes comparable with the pinning 
energy, both flux creep and flux flow will dominate the vortex dynamics and finding a 
correct description of the vortex motion in this regime is difficult. Inui et al [4] used a 
single-flux-depinning model to interpret the resistive broadening in high-T, superconductors 
in which they neglected the random distribution of the impurities and for simplicity took 
approximately a sinusoidal form to represent the position distribution of pinning sites. 
More recently, by taking the thermally fluctuating force into account explicitly, we have 
successfully explained the widely observed power-law I - V  characteristics over the whole 
temperature region IS]. In our model a sinusoidal form of pinning potential was also 
assumed, which is more suitable for intrinsic pinning with the magnetic field parallel to the 
planes. 

More generally, however, the problem is complicated by the fact that, because of 
inhomogeneities in the materials, the flux line always experiences a random potential 
background, and the vortex mobility is thus determined by the combined effect of the 
random pinning potential and thermal fluctuations. Therefore, it is interesting and important 
to investigate the effect on the flux motion due to the random distribution of pinning sites 
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in materials. In this paper, we simulate the vortex diffusion in one and two dimensions 
in the presence of randomly distributed pinning sites and thermal noise. We find that the 
main I-V features in the mixed state of superconductor have not changed much because 
of the presence of randomness in the distribution of pinning sites, which justifies the many 
approximations used in the previous papers. 

The dynamic equation of a single vortex is expressed as the following: 

q dr/dt = (Fd + Fp) + &t) (1) 

where q is the viscosity coefficient, Fd = (l/c)JCpo is the driving force with J being-the 
current density and $10 the superconducting flux quantum, F, is the pinning force and U t )  
is the fluctuating force which may be due to the random Lorentz force caused by thermal 
motion of the normal electrons in the vortex core. Here we consider that F, is caused by 
the interaction of the vortex with a number of pinning centres randomly positioned at Rj 
and as usual we choose a Gaussian form of the individual pinning wells: 

where the amplitude A, is the condensation energy stored in the vortex core, i.e. A, = 
(H:/8n)t:Jt. The stochastic force e(/) is assumed to be Gaussian white noise. In a 
Gauss-Markov process, the times t; between two random-noise pulses are distributed as 
p ( t i )  = (l/r)exp(-ti/r), where 7 is the mean time between two pulses. In a system with 
a discrete grid of time steps A, the probability p that after A one random pulse acts on the 
vortex is given by p = lo p(t;)dt = 1 - exp(-A/r) N A/r = p .  We find that @ ) / q  
can be written as 

A 

where j labels the j t h  time step, y(tj) is a random number chosen from Gaussian distribution 
of mean 0 and width 1, and q, is just a random number uniformly distributed between 0 
and 1: O(x)  is defined by 

x > o  I:, x < o .  
O(X) = 

Combining the results described above, the one-dimensional (ID) discretized equation can 
be written as 

x"" = X" + [(Ft + F,")/q]A + (2Ak~T/qp)"*y,O(p - qj ) .  (3) 

We used the algorithm described above to simulate the vortex diffusion in a model 
superconductor for a system having 200 pinning sites and a length of 200 times the coherence 
length 6 with a periodic boundary condition. The parameters in our calculation are chosen 
as follows: gu;b(0) = 27, ee(0) = 12, p,(T,) = 2 x 52 cm-', H,z(O) = 127 T, 
H,(O) = 2.72 T where q is determined from the Bardeen-Stephen formula and it  is easy to 
obtain 

I )  = (h8,/2C~)[H,Z(O)/HI[( 1 - t)"2/tl  
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2 -1f2 where p. is the normal-state resistivity and we postulate that tab.&) = h,,c(o)(l - f ) , 
H,(t) = H,(O)(l - 1'). Hcz(r) = Hcz(0)(l - t); here f = T/Tc  is a reduced temperature. 
Now, we should also choose A and r .  To do so, we know that the first and second moment 
can be obtained from equation (1): 

MI ( l / r ) ( 6 x )  = ( I / q ) F  MZ ( l / r ) ( ( s x ) ' )  = 2 k ~ T j q .  (4) 

Then, following the algorithm developed by Brass and Jensen 161, A and r can be selected 
by calculating the same moments and letting them agree with those given in equation (3). 
They satisfy the following conditions: 

A << 2keTq/(F)' << C 

where ( F )  is the average net deterministic force on a flux. 

I ......" ....- :I . 

05  1.5 

log10(j) 

Figure 1. Calculated curves of elechic field versus currenl density in the ID wse for bolh the 
random (0) and the periodic (A) pinning situation at 1 = 0.76. 

We obtain the J - E  characteristics in figure 1 for both a random and a periodic pinning 
potential at a temperature t = 0.76. The same features are shown in figure 2 for t = 0.92. 
Here E = (B/C)((dx/dr)} represents the induction electric field. From these figures, we 
can note the following points. 

(1) A critical current density Jcr exists below which the flux mobility almost suddenly 
falls to zero for both cases, irrespective of whether the pinning potential is random or 
periodic. Of course, the critical value of the current density for random pinning is higher 
than that for the periodic situation, which i s  more obvious at low temperatures, as seen 
in figure 1. This is because, as shown in figure 3, the amplitude of the random pinning 
potential has many peaks higher than the amplitude of the periodic potential, and they 
prevent the vortex from diffusing. This phenomenon may have some connection with the 
so-called glass state 171 in which all the vortices can be pinned. If the interaction between 
the vortices is included, which is not considered in this short paper, perhaps the true glass 
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log W) 
Figure 2. Same as figure 1, but for I = 0.92. 

state will be able to appear. This interesting problem will be discussed in a forthcoming 
paper. 

(2) Above J,,, the two curves completely coincide with each other. This means that 
the random distribution of the pinning  sites i n  a superconductor has no significant effect 
on the flux motion and so the approximation used in many analytical works, i.e. neglecting 
the randomness in the pinning site distribution and simply choosing a sinusoidal pinning 
potential, is reasonable, especially at high temperatures. 

(3) The power-law J - E  characteristics seen in these figures for different temperatures 
are consistent with the analytical work [8] and experiments [9]. This probably demonstrates 
that the dependence of the pinning potential on current is logarithmic in a rather wide 
temperature region [IO]. However, we prefer to think that it is caused by the dynamical 
equation incorporating both flux creep and flux flow naturally, as shown in our analytical 
work [SI and by the numerical simulation in this paper. This is because we never include 
the dependence of the pinning potential (random or periodic) on the current density J .  We 
think, most probably, that this power-law behaviour has some deeper intrinsic relation with 
the so-called self-organized criticality [I I ,  121, shown in a Langevin equation followed by 
the vortex moving in a periodic potential or more generally in a dynamical equation with a 
random potential. 

In addition to the I D  simulation, we have also made a similar calculation for the two- 
dimensional (2D) case. From equation (I) ,  it is easy to obtain a discretized equation for the 
ZD situation. The equation is 

x"" = X" + [ ( F A  + F ; x ) / ~ l A  + ( 2 A k ~ T / ~ p p ) ' / ~ ~ , @ ( p  - q j )  

y n t l  = Y" + (F:y/v)A + ( ~ A ~ T / v P ) " ~ ~ ~ @ ( P  - qj).  
( 5 )  

In this paper, we include only the Lorentz force as the driving force Fd, and consider that 
the current flows along the y direction. Therefore, in equation ( 5 )  the y component F& 
of the driving force should be zero. The calculation result is shown in figure 4 for two 
different temperatures, from which no significant differences from the ID case are found. 
The J-E behaviour is very similar to that in the ID case. However, in this work, we do not 
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include the Magnus force in our equation of motion. So, the driving force in the y direction 
is very weak and is given by only the thermal noise. Therefore, including the Magnus force 
will make the motion of flux become of a more ZD nature. Whether or not the situation 
becomes different after the Magnus force is taken into account is not known at present and 
will be left for future study. 

I 
Figure 3. 
versus position 1 in one dimension. 

Random pinning potential U 

4 Figure 4. Calculated curves of electric field versus 

priodic (A)  pinning potentials at f = 0.96 and for only 
random pinning (0) at t = 0.76. 

, , , , , I , , . .  
0 I 2 3 cumnt density in the ZD case for random (0) and 

loglob) 

In conclusion, we have simulated the vortex diffusion in the presence of random pinning 
potentials for ID and ZD cases and in particular have discussed the J-E characteristics. We 
find that the results obtained are similar to those found before using the periodic potentials. 
Finally, we would like to emphasize that our simulation is in the context of single-vortex 
dynamics and we include only the combined effects from randomness in the pinning sites 
distribution and thermal fluctuation. In some cases, single-voltex dynamics will not be 
enough; the collective effect will be important. The effects of the collective flux motion are 
also, in our opinion, very interesting and important. In this case, will the superconducting 
glass state really exist? Is there any 'truly' superconducting state? These questions remain 
open for future work to resolve. 
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